[wpml_language_selector_widget type="widget" flags=1 native=0]

FRONT END HARDWARE ENGINEER

Behavioral Level (Structural Description) entity

At the Behavioural Level abstraction a language aimed at hardware description such as Verilog or VHDL is used to describe the circuit, but so-called behavioural modeling is used in at least part of the circuit description. In behavioural modeling there must be a language feature that allows for imperative programming to be used to describe data paths and registers. This is the always -block in Verilog and the process -block in VHDL.

Register Transfer Level (Functional Description) architecture

A design in Register Transfer Level representation is usually stored using HDLs like Verilog and VHDL. But only a very limited subset of features is used, namely minimalistic always blocks (Verilog) or process blocks (VHDL) that model the register type used and unconditional assignments for the datapath logic. The use of HDLs on this level simplifies simulation as no additional tools are required to simulate a design in Register Transfer Level representation.

⦁ Describing Register Transfer Level Hardware

A Hardware Description Language Editor is any editor that allows to generate hardware code. Hardware Description Language is a specialized computer language used to describe the structure and behavior of digital logic circuits. It allows for the synthesis of a HDL into a netlist, which can then be synthesized, placed and routed to produce the set of masks used to create an integrated circuit.

Project Folder: rtl Open Source Tool: Emacs Language: VHDL / Verilog  
 
 

⦁ Simulating Register Transfer Level Hardware

A Hardware Description Language Simulator uses mathematical models to replicate the behavior of an actual hardware device. Simulation software allows for modeling of circuit operation and is an invaluable analysis tool. Simulating a circuit’s behavior before actually building it can greatly improve design efficiency by making faulty designs known as such, and providing insight into the behavior of electronics circuit designs.

Project Folder: bench Open Source Tool: GHDL / Icarus Verilog  

⦁ Synthesizing Register Transfer Level Hardware

A Hardware Description Language Synthesizer turns a RTL implementation into a Logical Gate Level implementation. Logical design is a step in the standard design cycle in which the functional design of an electronic circuit is converted into the representation which captures logic operations, arithmetic operations, control flow, etc. In EDA parts of the logical design is automated using synthesis tools based on the behavioral description of the circuit.

Project Folder: synthesis Open Source Tool: Yosys

⦁ Optimizing Register Transfer Level Hardware

A Hardware Description Language Optimizer finds an equivalent representation of the specified logic circuit under specified constraints (minimum area, pre-specified delay). This tool combines scalable logic optimization based on And-Inverter Graphs (AIGs), optimal-delay DAG-based technology mapping for look-up tables and standard cells, and innovative algorithms for sequential synthesis and verification.

Project Folder: synthesis Open Source Tool: ABC

⦁ Verifying Register Transfer Level Hardware

A Hardware Description Language Verifier proves or disproves the correctness of intended algorithms underlying a hardware system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification uses modern techniques (SAT/SMT solvers, BDDs, etc.) to prove correctness by essentially doing an exhaustive search through the entire possible input space (formal proof).

Project Folder: verification Open Source Tool: SymbiYosys

Leave a Comment